Intelligent Design Icon Intelligent Design
Medicine Icon Medicine

How the Body Works: Intelligent Design in Action

800px-KazbegiMar.jpg

Editor’s note: Engineers and physicians have a special place in the community of thinkers and scholars who have elaborated the argument for intelligent design. Perhaps that’s because, more than evolutionary biologists, they are familiar in very practical ways with the challenges of designing or maintaining a functioning complex system on the order of a jet airplane, or the human body. With that in mind, Evolution News & Views is delighted to introduce a new series, "The Designed Body," and to welcome Howard Glicksman MD as a contributor. A graduate of the University of Toronto (1978), he presently practices palliative medicine for a hospice organization. In this post, Dr. Glicksman explains the rationale behind the series. For the complete series, see here.

the-designed-body4.jpgHave you ever wondered why it’s so hard to hold your breath, or how your body automatically matches your breathing with your level of activity? Whether you’re running to catch a bus, talking to friends, or just sleeping on the sofa, your body seems to know just how fast and hard you should breathe.

Or have you wondered why even if you go hours or days without eating, your body automatically makes sure it has enough glucose in your blood so you can keep doing what you want to do?

To understand such things you must first know how the laws of nature affect the body and how it must work against them to stay alive.

Everything in the world is made up of matter. All matter consists of many different types of atoms chemically bonded to form different types of molecules. All matter mustfollow the rules of physics and chemistry. Just like our planet where two-thirds is covered by water and one-third by land, our body is roughly two-thirds water and one-third other matter. But, unlike most of the earth, our "water and dust" is organized for life. The body is made up of trillions of cells each of which contains trillions and trillions of atoms and molecules. Since our cells are made up of atoms and molecules, this means that they too must obey the laws of nature.

We each experience these natural forces every day: inertia, friction, momentum, gravity, and heat transfer, to name a few. Experience teaches that, due to the laws of nature, our body has definite physical and chemical limitations. Jump down from a high ledge and you’re likely to break your leg because of the force of gravity and the fact that your leg is made of bone, not rubber. Put your hand into a fire and you’re likely to burn your fingers due to the transfer of heat energy and the fact that your body is mostly made of flesh, not asbestos. Breathing in enough air to match your level of activity, and making sure there’s enough glucose in your blood to provide enough energy to all of your cells, are just two of the ways your body must follow the rules to win in the game of life.

But, like in any game, to follow the rules means that you must first take control. If you’re playing baseball you can’t hit the ball just anywhere or run the bases any which way. By taking control you must try to keep the ball in fair territory and run the bases correctly. So too, your body must be able to take control of many different chemicals and functions.

However, whether the context is baseball or the battle for survival, experience tells us that just following the rules and taking control don’t automatically mean that you’ll win. At the end of the baseball game, if your opponent has scored more runs than you have, then you’ve lost. So too, if the body doesn’t have just the right level of oxygen, or glucose, or water, or salt, or calcium, or red blood cells, or white blood cells, or blood pressure, or temperature, then it can’t stand up to the laws of nature. It loses the game of life, and dies. In other words, real numbers have real consequences.

Death is an inevitable consequence of life and the mechanisms that result in its taking place should be fully understood and incorporated into any theory of how life came about.

If you really want to understand how life came into existence you must first understand how easily it can become non-existent. Just as a mechanic knows that there are many different ways a car can "die," so too every physician knows that there are many different pathways to death. Theories about life that only describe where the different parts may have come from, or even how they may have come together to perform a specific function, as difficult as that may be, are not good enough. For medical science knows that when the body has allowed the rules of physics and chemistry to take over, having lost control and not being able to maintain the right level of any one chemical or vital function, then the consequence is death.

Some people believe that life came into being by chance and the laws of nature alone. Darwin was an excellent observer of nature but he had no idea how life actually works at the cellular or molecular levels. All clinical experience teaches that trying to explain how human life came into being just by looking at ancient bones, without considering their complicated cellular structure and physiology along with their vital importance in heart, nerve, gland, muscle, and clotting function, is like trying to explain how airplanes came into being just by looking at the fuselage, the wings, the tail section, and the engines without considering, among other things, modern metallurgy, jet propulsion, aerodynamics, and electronics.

In this series, I plan to show how the body works and how the only plausible explanation for its ability to combat the laws of nature and survive in the world are the many physiological innovations that must have come about through intelligent design.

Contrary to what evolutionary biologists would have us believe, medical experience shows that when left to their own devices, chance and the laws of nature cause disability and death, not functional ability and life. Looking at one important chemical and physiological parameter of body function at a time, I propose to explain its vital significance and how the body goes about controlling it to stay alive.

Finally, using clinical experience, I will discuss what happens when things go wrong and organ malfunction takes place.

It is my hope that what I have to say will empower you to defend yourself from what I think is the greatest intellectual and spiritual error in human history: the idea that human life has come about by chance and the laws of nature alone.

Image by yftahp (??? ?????) [CC BY-SA 3.0], via Wikimedia Commons.