Evolution News and Views (ENV) provides original reporting and analysis about the debate over intelligent design and evolution, including breaking news about scientific research.

Evolution News and Views
Evolution NEWS
 

Welcome to the Top Ten Scientific Problems with Biological and Chemical Evolution

Darwin statue

Editor's note: This is Part 1 of a 10-part series based upon Casey Luskin's chapter, "The Top Ten Scientific Problems with Biological and Chemical Evolution," in the volume More than Myth, edited by Paul Brown and Robert Stackpole (Chartwell Press, 2014). The full chapter can be found online here. Other individual installments can be found here: Problem 2, Problem 3, Problem 4, Problem 5, Problem 6, Problem 7, Problem 8, Problem 9, Problem 10.

"There are no weaknesses in the theory of evolution."1 So said Eugenie Scott, the de facto head of the Darwin lobby, while speaking to the media in response to the Texas State Board of Education's 2009 vote to require students to learn about both the scientific evidence for and against neo-Darwinian evolution.

For those who follow the debate over origins, Dr. Scott's words are as unsurprising as they are familiar. It seems that almost on a daily basis, we find the news media quoting evolutionary scientists declaring that materialist accounts of biological and chemical evolution are "fact." Students who take college-preparatory or college-level courses on evolution are warned that doubting Darwinism is tantamount to committing intellectual suicide -- you might as well proclaim the Earth is flat.2 Such bullying is enough to convince many that it's much easier on your academic standing, your career, and your reputation to just buy into Darwinism. The few holdouts who remain are intimidated into silence.

But is it true that there are "no weaknesses" in evolutionary theory? Are those who express doubts about Darwinism displaying courage, or are they fools that want to take us back to the dark ages and era of the flat Earth?3 Thankfully, it's very easy to test these questions: all one must do is examine the technical scientific literature and inquire whether there are legitimate scientific challenges to chemical and biological evolution.

This chapter will review some of this literature, and show that there are numerous legitimate scientific challenges to core tenets of Darwinian theory, as well as predominant theories of chemical evolution. Those who harbor doubts about Darwinism need not be terrified by academic bullies who pretend there is no scientific debate to be had.

Problem 1: No Viable Mechanism to Generate a Primordial Soup

According to conventional thinking among origin of life theorists, life arose via unguided chemical reactions on the early Earth some 3 to 4 billion years ago. Most theorists believe that there were many steps involved in the origin of life, but the very first step would have involved the production of a primordial soup -- a water-based sea of simple organic molecules -- out of which life arose. While the existence of this "soup" has been accepted as unquestioned fact for decades, this first step in most origin-of-life theories faces numerous scientific difficulties.

In 1953, a graduate student at the University of Chicago named Stanley Miller, along with his faculty advisor Harold Urey, performed experiments hoping to produce the building blocks of life under natural conditions on the early Earth.4 These "Miller-Urey experiments" intended to simulate lightning striking the gasses in the early Earth's atmosphere. After running the experiments and letting the chemical products sit for a period of time, Miller discovered that amino acids -- the building blocks of proteins -- had been produced.

For decades, these experiments have been hailed as a demonstration that the "building blocks" of life could have arisen under natural, realistic Earthlike conditions,5 corroborating the primordial soup hypothesis. However, it has also been known for decades that the Earth's early atmosphere was fundamentally different from the gasses used by Miller and Urey.

The atmosphere used in the Miller-Urey experiments was primarily composed of reducing gasses like methane, ammonia, and high levels of hydrogen. Geochemists now believe that the atmosphere of the early Earth did not contain appreciable amounts of these components. (Reducing gasses are those which tend to donate electrons during chemical reactions.) UC Santa Cruz origin-of-life theorist David Deamer explains this in the journal Microbiology & Molecular Biology Reviews:

This optimistic picture began to change in the late 1970s, when it became increasingly clear that the early atmosphere was probably volcanic in origin and composition, composed largely of carbon dioxide and nitrogen rather than the mixture of reducing gases assumed by the Miller-Urey model. Carbon dioxide does not support the rich array of synthetic pathways leading to possible monomers...6

Likewise, an article in the journal Science stated: "Miller and Urey relied on a 'reducing' atmosphere, a condition in which molecules are fat with hydrogen atoms. As Miller showed later, he could not make organics in an 'oxidizing' atmosphere."7 The article put it bluntly: "the early atmosphere looked nothing like the Miller-Urey situation."8 Consistent with this, geological studies have not uncovered evidence that a primordial soup once existed.9

There are good reasons to understand why the Earth's early atmosphere did not contain high concentrations of methane, ammonia, or other reducing gasses. The earth's early atmosphere is thought to have been produced by outgassing from volcanoes, and the composition of those volcanic gasses is related to the chemical properties of the Earth's inner mantle. Geochemical studies have found that the chemical properties of the Earth's mantle would have been the same in the past as they are today.10 But today, volcanic gasses do not contain methane or ammonia, and are not reducing.

A paper in Earth and Planetary Science Letters found that the chemical properties of the Earth's interior have been essentially constant over Earth's history, leading to the conclusion that "Life may have found its origins in other environments or by other mechanisms."11 So drastic is the evidence against pre-biotic synthesis of life's building blocks that in 1990 the Space Studies Board of the National Research Council recommended that origin of life investigators undertake a "reexamination of biological monomer synthesis under primitive Earthlike environments, as revealed in current models of the early Earth."12

Because of these difficulties, some leading theorists have abandoned the Miller-Urey experiment and the "primordial soup" theory it is claimed to support. In 2010, University College London biochemist Nick Lane stated the primordial soup theory "doesn't hold water" and is "past its expiration date."13 Instead, he proposes that life arose in undersea hydrothermal vents. But both the hydrothermal vent and primordial soup hypotheses face another major problem.

Chemical Evolution Is Dead in the Water

Assume for a moment that there was some way to produce simple organic molecules on the early Earth. Perhaps they did form a "primordial soup," or perhaps these molecules arose near some hydrothermal vent. Either way, origin of life theorists must then explain how amino acids or other key organic molecules linked up to form long chains (polymers) like proteins (or RNA).

Chemically speaking, however, the last place you'd want to link amino acids into chains would be a vast water-based environment like the "primordial soup" or underwater near a hydrothermal vent. As the National Academy of Sciences acknowledges, "Two amino acids do not spontaneously join in water. Rather, the opposite reaction is thermodynamically favored."14 In other words, water breaks protein chains back down into amino acids (or other constituents), making it very difficult to produce proteins (or other polymers) in the primordial soup.

Materialists lack good explanations for these first, simple steps which are necessary to the origin-of-life. Chemical evolution is literally dead in the water.

References:

[1.] Eugenie Scott, quoted in Terrence Stutz, "State Board of Education debates evolution curriculum," Dallas Morning News (January 22, 2009), also requoted in Ed Stoddard, "Evolution gets added boost in Texas schools," Reuters.com at http://blogs.reuters.com/faithworld/2009/01/23/evolution-gets-added-boost-in-texas-schools/

[2.] Karl W. Giberson, Saving Darwin: How to be a Christian and Believe in Evolution, p. 53 (HarperOne, 2008) ("biologists today consider the common ancestry of all life a fact on par with the sphericity of the earth").

[3.] In any case, it's largely a myth that Western Civilization once believed in a flat earth. See Jeffrey Burton Russell, "The Myth of the Flat Earth," at http://www.veritas-ucsb.org/library/russell/FlatEarth.html

[4.] See Stanley L. Miller, "A Production of Amino Acids under Possible Primitive Earth Conditions," Science, 117: 528-529 (May 15, 1953).

[5.] See Jonathan Wells, Icons of Evolution: Why Much of What We Teach About Evolution Is Wrong, (Washington D.C.: Regnery, 2000); Casey Luskin, "Not Making the Grade: An Evaluation of 19 Recent Biology Textbooks and Their Use of Selected Icons of Evolution," Discovery Institute (September 26, 2011), at http://www.evolutionnews.org/DiscoveryInstitute_2011TextbookReview.pdf

[6.] David W. Deamer, "The First Living Systems: a Bioenergetic Perspective," Microbiology & Molecular Biology Reviews, 61:239 (1997).

[7.] Jon Cohen, "Novel Center Seeks to Add Spark to Origins of Life," Science, 270: 1925-1926 (December 22, 1995).

[8.] Ibid.

[9.] Antonio C. Lasaga, H. D. Holland, and Michael J. Dwyer, "Primordial Oil Slick," Science, 174: 53-55 (October 1, 1971).

[10.] Kevin Zahnle, Laura Schaefer, and Bruce Fegley, "Earth's Earliest Atmospheres," Cold Spring Harbor Perspectives in Biology, 2(10): a004895 (October, 2010) ("Geochemical evidence in Earth's oldest igneous rocks indicates that the redox state of the Earth's mantle has not changed over the past 3.8 Gyr"); Dante Canil, "Vanadian in peridotites, mantle redox and tectonic environments: Archean to present," Earth and Planetary Science Letters, 195:75-90 (2002).

[11.] Dante Canil, "Vanadian in peridotites, mantle redox and tectonic environments: Archean to present," Earth and Planetary Science Letters, 195:75-90 (2002) (internal citations removed).

[12.] National Research Council Space Studies Board, The Search for Life's Origins (National Academy Press, 1990).

[13.] Deborah Kelley, "Is It Time To Throw Out 'Primordial Soup' Theory?," NPR (February 7, 2010).

[14.] Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council, The Limits of Organic Life in Planetary Systems, p. 60 (Washington D.C.: National Academy Press, 2007).